What most affects a seaman's

(and your) life?

The Weather. ?

The Shipping Forecast
 (0048, 0535, 1201, 1754 BBC LW)

1. Gale warning summary
2. General synopsis at time of issue
3. Sea-area forecasts:

Wind direction and speed
> Wind later (after 12 hours)

- Sea state
- Weather (ie rain, showers)
> Visibility
Reports from Coastal stations
Gale warnings are broadcast at the first available programme break

http:/lwww.metoffice.gov.ukleducation/teachers/in-depth/understanding


```
Shipping forecast
    The shipping forecast issued by the Met Ofice, on behaf of the Maritime and Coastguard Agency, of
        Monday 04 February 2008 at 1130
    There are warnings of gales in Viking, North Utsire, South Utsire, Forties, Cromarty, Tyne, Dogger,
    Fisher, German Bight, Humber, Thames, Dover, Wight, Portland, Plymouth, Biscay, FitzRoy, Sole, Lundy,
    The General synopsis at 0600
    Complex low Rockall 965 expected Faeroes 972 by 0600 tomorrow. Atlantic low moving rapidly
    northeast expected Ireland 977 by same time
    The area forecasts for the next 24 hours
    Viking, North Utsire, South Utsire, East Forties
    Southeasterly 6 to gale 8, occasionally severe gale 9 except east Forties. Very rough or high becoming
    h. Rain or showers. Moderate or goo
    Southerly 6 or 7, occasionally gale 8 except Forth, becoming cyclonic 5 or 6 later. Moderate or rough.
    Showers, rain later. Good becoming moderate
    Tyne, Dogger
    Southwest backing south 5 to 7, perhaps gale 8 later. Moderate or rough. Showers, rain later. Good
    becoming moderate
    Southeast veering south 6 to gale 8. Rough or very rough. Rain or showers. Moderate or good
    German Bight, Humber, Thames, Dover
    South or southwest 5 or, increasing 7 or perhaps gale 8 Iater. Moderate or rough, occasionally vey
    rough later. Showers, rain later. Moderate or good
    Wight, Portland, Plymouth
    Soulwesterly 5 or 6 increasing 7 or gale 8. Moderate or rough, becoming very rough or high in Portland
    and Plymouth. Showers, rain for a time. Good, becoming moderate or poor
```


	Wind Speed	Description	Waves
1	1-3	Light airs	Ripples.
2	4-6	Light breeze	Small wavelets
3	7-10	Gentle breeze	Occasional crests.
4	11-16	Moderate breeze	Frequent white horses
5	17-21	Fresh breeze	Moderate waves, many white crests.
6	22-27	Strong breeze	Large waves, white foam crests.
7	28-33	Near gale	4 m waves. Sea heaps up, spray, breaking waves, foam blows in streaks.
8	34-40	Gale	Moderately high waves (5.5m), breaking crests. Foam blown in streaks.
9	41-47	Severe gale	High waves (7 m), spray affects visibility. Dense streaks of foam along the direction of wind; crests of waves begin to topple and roll over.
10	48-55	Storm	Very high waves (9m) long breaking crests
11	55-63	Violent Storm	11m waves Sea covered in foam. Visibility affected.
12	64 +	Hurricane	11m+ waves The air is filled with foam and spray; sea completely white with driving spray; visibility very seriously affected

Shipping Forecast Terms

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
Gale Warnings - Timing \\
Imminent \(=\) within 6 hours of issue \\
Soon \(=\) within \(6-12\) hours \\
Later \(=\) after 12 hours
\end{tabular} \& \begin{tabular}{l}
Pressure System - speed of movement \\
Slowly - up to 15 kn \\
Steadily - 15-25 kn
\end{tabular} \\
\hline \begin{tabular}{l}
Wind \\
Veering - changing direction clockwise \\
Backing - changing direction anticlockwise \\
Cyclonic - rapid changes in direction \\
Direction - where the wind comes from
\end{tabular} \& Rather quickly - \(25-35 \mathrm{kn}\)
Rapidly - \(35-45 \mathrm{kn}\)

Fair = No precipitation

\hline | Pressure Tendency |
| :--- |
| Steady: < 0.1 mb in 3 hrs |
| Slowly: 0.1 to 1.5 mb in $\mathbf{3} \mathbf{~ h r s}$ |
| Rising/Falling: 1.6 to 3.5 mb in $\mathbf{3} \mathbf{~ h r s}$ |
| Quickly: 3.6 - 6.0 mb in 3 hrs |
| Very Rapidly: >6.0 mb in $\mathbf{3} \mathbf{~ h r s ~ = ~ G a l e ~}$ | \& | Visibility |
| :--- |
| Very poor $=\mathbf{< 1 0 0 0}$ metres |
| Poor $=<2$ Miles |
| Moderate = $\mathbf{2 - 5}$ Miles |
| Good =>5 Miles |

\hline
\end{tabular}

How a Depression Forms-1

How a Depression Forms - 2

Clouds and Rain

> Air temperature decreases with height - at about $0.5^{\circ} \mathrm{C}$ per 100 meters.
> This known as the Adiabatic 'Lapse Rate'.
> An Adiabatic Process is any process occurring without gain or loss of heat within a system

- When air near sea level becomes warmer than the air above it, it tends to rise. As a 'bubble' of air rises, it moves into reducing pressure, so it expands.
> As it expands, it gets cooler, at a rate of about $1^{\circ} \mathrm{C}$ per 100 metres, until it reaches a level where it is the same temperature as the ambient air around it.
- If the temperature of the surrounding air is reducing more quickly than the bubble temperature, the bubble of air will continue to rise: this produces conditions described as 'unstable' - Cumulus cloud
- If the temperature of the surrounding air is reducing more slowly than usual, the bubble of air will not be able to rise as far or as quickly: this produces 'stable' conditions - Stratus cloud.

Clouds

Low-level clouds (base 0-2 km high)
Stratus (S) - extensive, featureless, shallow cloud sheet, can yield drizzle or light rain
Stratocumulus (Sc) - shallow cloud sheet, broken into roughly recurring masses of cumulus. Only light / moderate winds
Cumulus (Cu) - separate, hill-shaped puffy clouds, with level bases. Usually fair, but may bring showers after a cold front.
Cumulonimbus (Cb) - very large, high (up to10km) cumulus, with dark bases and anvil shaped top. Can bring thunder, lightning, squalls and heavy rain
Medium-level clouds (base 2-4 km high)
Altocumulus (Ac) - shallow cloud sheet with roughly regular patches or ripples of small rounded clouds. Usually fair weather
Altostratus (As) - featureless, thin, translucent cloud sheet. Usually fair weather.
Nimbus (Ns) - extensive, very dark cloud sheet, usually yielding precipitation
High clouds (base 5-15 km high)
Cirrus (Ci) - streaky, white, feather-like cloud. Indicates an approaching depression
Cirrocumulus (Cc) - shallow, more or less regular patches or ripples of cloud. Fair weather.
Cirrostratus (Cs) - shallow sheet of largely translucent cloud. Fair weather.

What affects Wave Height?

1. Wind speed and duration
2. Tide speed and direction
wind against tide causes higher waves
3. Depth of water - waves break in shallows
. Fetch - the distance over which the wind blows
. Swell - the wave pattern before the current weather

Fog

Land (Radiation) Fog Clear nights with little wind
Damp warm air radiates off as the ground cools at night
Condensation takes place
Fog forms first over valleys, water and damp vegetation

Weather Forecasts 1

A possible approach:

1. Use the synoptic 6 day charts for a general overview

Weather Forecasts 2

3. Use your preferred display for more pictorial views: www.xcweather.co.ukl

http://www.weathercharts.org/ukmomslp.htm
4. Use www.GRIB.us for a 'raw' view of the forecast winds - 3

Weather Forecasts 3

3. Use your preferred display for more pictorial
views: www.weatheronline.co.uk

Weather Forecasts 4

Caution:

Many sites use the GFS model - Global Forecasting System.
They display the same forecast in different formats. Other good models are NAE (Met Office North Atlantic Europe) and ECWMF (European Centre for Medium Range Forecasting).
Other good sites:
Windguru
Weatherweb (Simon Keeling). He will also send regular video updates and good information including a weekend forecast

Météo France (own model)
Weatheronline.co.uk
Etc etc

Weather Forecasts 5

www.globalmarinenet.com/grib.htm
www.mailasail.com/Main/Weather
There is a free FTP service from www.grib.us and web browser services from www.passageweather.com/ and www.windfinder.com , these give wind arrows on a regular grid. Again, using a browser, there are wind arrows at specific locations derived by simple interpolation from www.xcweather.co.uk
www.buoyweather.com pay site www.windguru.com/int

There is an FTP service, on prepayment www.movingweather.com , which gives wind arrows on a chart, "zooming in" by simple interpolation from the GFS.

Weather Forecasts 5

Frank Singleton: My experience, as a user, is that a 24 hour synoptic chart or GRIB forecast will be pretty good, but never be precisely correct in all detail.

* A 48 hour forecast will have more errors.
* At 5 days, there will be appreciable skill but significant errors in places.
* By 7 days, skill will be too small for our use
* By 15 days there will be no skill whatsoever.
* Consider the lifetime of small weather features:
* A gust lasts seconds
* a small cumulus cloud lasts about 30 minutes
* a thunderstorm has a life span of about 6 hours
$*$ a group of storms perhaps 36 to 48 hours
* a frontal depression can have a life span of a few days. These facts determine how long ahead it is worthwhile using a meso-scale forecast. Anything up to 36 hours is my suggestion and no more.

Subtle stuff - Wind during Day and Night

Why do wind speeds often decrease in the evening?
The wind at ground level is primarily affected by the wind higher up (geostrophic wind). It is also slowed by friction with the ground.
During the day, the vertical mixing caused by the sun and convection transfers the wind at altitude to ground level, and increases it. In the evening, convection decreases and the ground wind slows down.

Subtle stuff - Easterlies on S edge of a High

Why are wind speeds increased on the southern edge of high pressure systems? It is all to do with the balancing out of the Coriolis force (CF1), centrifugal force (CF2) and the Pressure Gradient force (PGF)
In the northern hemisphere the Coriolis force acts to balance out the combined effect of centrifugal force and pressure gradient force (i.e. CF1=CF2+PGF)

However the centrifugal force will help a parcel of air accelerate into areas of low pressure and, because the forces still need to balance, this speeds up until the Coriolis force strengthens and the flow remains in balance once again.
The effect of this is to make the anticyclonic flow on the southern side of an area of high pressure (which has a weaker Coriolis until it is forced to speed up) to be stronger than the equivalent cyclonic flow.
Is this the reason why easterlies don't drop in the evening or is there yet another reason?

Yes, as the wind inherently has more geostrophic in it, the surface layer reduction in turbulence as evening arrives is not eased as quickly and hence the wind speeds to not drop as quickly.
Simon Keeling www.weatherweb.com

